Review Problem

■ If all gates have a delay of 1 ns, how long does a 4bit adder take to compute?

Basic Circuit Elements

■ Readings: 4-4.1.1, 4.2, 4.3-4.3.2
■ Standard TTL Small-Scale Integration:
1 chip $=2-8$ gates

- Requires numerous chips to build interesting circuits
- Alternative: Complex chips for standard functions
- Single chip that performs very complex computations

■ Multiplexer/Decoder/Encoder: Standard routing elements for interconnections

■ FPGAs: Programmable for arbitrary functions

Design Example: Basic Telephone System

- Put together a simple telephone system

Basic Telephone System (cont.)

- Multiple subscribers, one operator.
- Operator controls all connections

Standard Circuit Elements

■ Develop implementations of important "Building Blocks"

- Used in Networks, Computers, Stereos, etc.

■ Multiplexer: Combine N sources onto 1 wire
■ Encoder: Determine which input is active
■ Decoder: Convert binary to one-of-N wires

Decoders

■ Used to select one of 2^{N} outputs based on N input bits
■ Input: N bits; output: 2^{N} outputs -- only one is active
■ A decoder that has n inputs and m outputs is referred to as an $n \times m, N: M$, or n-to- m decoder
■ Example: 3-to-8 decoder

Decoder Implementation

S1	SO	D3	D2	D1	D0
0	0	0	0	0	1
0	1	0	0	1	0
1	0	0	1	0	0
1	1	1	0	0	0

Enabled Decoder Implementation

* Active High enable

En	S1	S0	D3	D2	D1	D0
0	0	0				
0	0	1				
0	1	0				
0	1	1		ser		
1	0	0			perious	
1	0	1			sul De	
1	1	0				
1	1	1				

Enabled Decoders in Verilog

```
module enDecoder2_4 (out, in, enable);
    output reg [3:0] out;
    input [1:0] in;
    input enable;
    always @(*) begin
        if (enable)
        cuse (in)
        2'b00. out = 4'b0001;
        2'bol:out = 4'b0010;
                \vdots
        end case
    clse
    aut = 4'b0000;
```


Encoders

■ Performs the inverse operation of decoders
■ Input: 2^{N} or less lines -- only 1 is asserted at any given time
■ Output: N output lines
■ Function: the output is the binary representation of the ID of the input line that is asserted

Encoder Implementation

* 4:2 Encoder

D3	D2	D1	DO	A1	A0
0	0	0	1	0	0
0	0	1	0	0	1
0	1	0	0	1	0
1	0	0	0	1	1

$$
\begin{aligned}
& A_{1}=D_{2}+D_{3} \\
& A_{0}=D_{1}+D_{3}
\end{aligned}
$$

1) WHEN NO ONE CALLS \rightarrow CODE OO
2) D2 AND DI CALL \rightarrow CODE $I I\left(D_{3}\right)$

Priority Encoder

- Use priorities to resolve the problem of 2 or more input lines active at a time.
■ One scheme: Highest ID active wins
- Also add an output to identify when at least 1 input active

D3	D2	D1	D0	A1	A0	Valid
0	0	0	0	x	x	0
0	0	0	1	0	0	1
0	0	1	X	0	1	1
0	1	X	X	1	0	1
1	X	X	X	1	1	1

Multiplexer

- An element that selects data from one of many input lines and directs it to a single output line
- Input: 2^{N} input lines and N selection lines
- Output: the data from one selected input line
- Multiplexer often abbreviated as MUX

Multiplexer Implementation

■ 4:1 MUX

$S 1$	$S 0$	F	$F=\overline{S I S O D O}$
0	0	$D 0$	
0	1	$D 1$	
1	0	$D 2$	
1	1	$D 3$	
$S I S O D 1$			
$S I S D D$			

Multiplexers in General Logic

- Implement $\mathrm{F}=\mathrm{X} \overline{\mathrm{Y}} \mathrm{Z}+\mathrm{Y} \overline{\mathrm{Z}}$ with a 8:1 MUX

Multiplexers in General Logic (cont.)

■ Implement $\mathrm{F}=\mathrm{X} \overline{\mathrm{Y}} \mathrm{Z}+\mathrm{Y} \overline{\mathrm{Z}}$ with a 4:1 MUX

